Telegram Group & Telegram Channel
🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/jp/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6479
Create:
Last Update:

🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/jp/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6479

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from jp


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA